Республиканская олимпиада по астрономии II этап (районный, городской), 2014-2015 учебный год

Задания и ответы к ним

Задание № 1.

В каком созвездии находятся звёзды:

Мицар, Бетельгейзе, Альдебаран, Антарес, Гемма.

Задание № 2.

По звёздной карте определите экваториальные координаты звёзд:

Дубхе, Сириус, Капелла, Бетельгейзе, Денеб.

Задание № 3.

По звёздной карте определите дату, когда склонение Солнца равно $+10^{\circ}00'$. В каком созвездии в этот день находится Солнце? Чему в этот день равно прямое восхождение Солнца?

Задание № 4.

Наблюдатель, находящийся на экваторе Земли, определил 22 июня горизонтальные координаты Солнца в точке восхода, в точке захода и в точке верхней кульминации. Чему равны эти координаты? Чему равно прямое восхождение Солнца на день наблюдения, выраженное в часовой мере? Наклон эклиптики к плоскости земного экватора принять равным 23°27′. При решении задачи не учитывать видимые размеры диска Солнца и рефракцию.

Задание № 5.

Предположим, что вокруг Солнца в плоскости эклиптики на расстоянии 1 а.е. по круговой орбите двигаются два спутника. Движение спутников прямое.

Масса первого спутника m_1 равна 0,1 в единицах массы Солнца, масса второго спутника m_2 равна 0,01 в единицах массы Солнца. В начальный момент времени t_0 гелиоцентрическая эклиптическая долгота первого спутника $l_1 = 30^\circ$, гелиоцентрическая эклиптическая долгота второго спутника $l_2 = 70^\circ$, разность эклиптических долгот $\Delta l = 40^\circ$.

Как изменится Δl через бесконечно малый интервал времени Δt : останется неизменной, увеличится, уменьшится? Докажите свой выбор формулой.

Задание № 6.

Определить наименьший D - диаметр объектива телескопа, в который можно увидеть диск Плутона (линейный радиус Плутона $R_{\Pi\pi}$ принять равным 1151 км), когда планета находится в оппозиции в перигелии.

Большая полуось орбиты Плутона $a_{\Pi\pi}$ = 39,4 а.е., эксцентриситет орбиты Плутона $e_{\Pi\pi}$ = 0,25, орбиту Земли принять круговой a_{\oplus} = 1 а.е.

Задание № 7.

В 2007 году в Таиланде состоялась международная астрономическая олимпиада школьников. В состав белорусской команды входил победитель республиканской олимпиады по астрономии, выпускник гимназии №1 г.Витебска, студент первого курса БГУ Алексей Голованов. Одним из заданий олимпиады было проведение астрономических наблюдений.

Определите, чему равен азимут, высота и зенитное расстояние звезды Капелла (α =5 $^{4}17^{2}1^{6}$, δ =45 $^{5}58'13"$) в верхней кульминации в столице Таиланда Бангкоке (λ =100 $^{4}3'53"$, ϕ =13 $^{4}0'12"$).

Задание № 8.

- 1. Чему равно прямое восхождение Солнца в ноль часов 18 декабря, если в ноль часов 17 декабря прямое восхождение Солнца $17^437^14^6$, а в ноль часов 19 декабря прямое восхождение Солнца $17^446^06^6$?
- 2. Чему равно склонение Солнца в ноль часов 18 декабря, если в ноль часов 17 декабря склонение Солнца равно 23°20'19", а за 1 час склонение Солнца уменьшается на 5,5"?

Задание № 9.

На основе закона Ньютона-Кеплера провести вычисления и определить массу Солнца.

Гравитационная постоянная $G = 6,671 \cdot 10^{-11} \,\mathrm{m}^3 \,\mathrm{kr}^{-1} \,\mathrm{c}^{-2}$, большая полуось земной орбиты $a_{\oplus} = 149,6 \,\mathrm{млн}$. км, период обращения Земли вокруг Солнца $T_{\oplus} = 365,256 \,\mathrm{сут}$. Массу Земли не учитывать.

Задание № 9.

3 ноября всемирное время $T_0=9^{4}00^{M}$. Чему равно в этот момент T_{μ} – истинное солнечное время в точке с географическими координатами $\lambda=45^{\circ}$, $\phi=13^{\circ}$), если известно, что $\eta=-16^{M}$?

Задание № 10.

На основании третьего закона Кеплера-Ньютона провести вычисления и определить массу Солнца.

Гравитационная постоянная $G=6,671\cdot10^{-11}$ ($M^3\cdot K\Gamma^{-1}\cdot C^{-2}$), большая полуось земной орбиты $a_0=149,6$ млн.км, период обращения Земли вокруг Солнца $T_0=365,256^{\text{сут}}$. Массу Земли не учитывать.